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Two types of minimal models were used to study stochastic oscillations in sensory receptors composed of
two coupled oscillators, as in the electroreceptors of paddlefish. They have populations of cells in sensory
epithelia undergoing �26 Hz oscillations. These are coupled unidirectionally via synaptic excitation to a few
afferent neurons, each of whose terminal contains a 30–70 Hz oscillator, expressed as a dominant peak in the
power spectra of spontaneous afferent firing, corresponding to the mean firing rate. The two distinct types of
internal noisy oscillators result in stochastic biperiodic firing patterns of the primary afferent sensory neurons.
However, the functions of the oscillations have remained elusive, motivating this study. The models we used
here are based on the circle map, or on the Ermentraut-Koppell canonical phase �theta neuron� model. Param-
eters were chosen according to experimental data. We used the models to demonstrate that the presence of
epithelial oscillations leads to extended negative correlations of afferent interspike intervals, and to show that
the correlation structure depends crucially on the ratio of the afferent to epithelial oscillation frequencies, being
most pronounced when this ratio is close to 2, as observed in experiments. Our studies of stochastic versions
of these models are of general interest for a wide range of coupled excitable systems, especially for under-
standing the functional roles of noisy oscillations in auditory and other types of “hair cell–primary afferent”
sensory receptors.
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I. INTRODUCTION

Many sensory receptors possess a structure whereby de-
tector cells in a sensory epithelium are synaptically coupled
to one or more excitable primary afferent neurons. The sen-
sory epithelia are composed of stimulus-sensitive hair cells
separated by support cells. The afferent axon conducts action
potentials, a receptor’s output, to the brain. Examples of such
“hair cell–primary afferent” receptors include the auditory
and vestibular sensory receptors of vertebrates, and also the
electroreceptors of certain aquatic animals.

Prominent examples of spontaneous oscillations in hair
cells have been characterized, occurring without any stimu-
lus being applied �1–4�. The oscillations are expressed as
periodic shifts of the membrane potential of a hair cell, or as
periodic motions of a hair cell’s mechanosensitive cilia. The
natural frequency of oscillations correlates with the stimulus
frequency that a given hair cell is most sensitive to, thus
contributing to frequency selectivity �1,3�. It was proposed
recently that spontaneous oscillations in certain auditory hair
cells are “active,” in other words, are not simply driven by
thermal noise �4,5�.

On the other hand, spontaneous oscillatory firing patterns
of afferent neurons have been observed in several sensory
receptors. For example, mammalian cold receptor afferents
produce repetitive bursts of spikes when chilled �6�; the os-

cillations have been modeled as arising from slow ion chan-
nels in the afferent terminals �7,8�.

In this paper, we use minimal models to characterize and
explore the possible function of two distinct types of oscil-
lators embedded into the novel “biperiodic” organization of
electroreceptors �ERs� of paddlefish �Polyodon spathula�
�9,10�. An ER of this freshwater fish offers an accessible and
experimentally advantageous biological model for studying
nonlinear phenomena such as self-sustained oscillations �9�,
synchronization �11�, bursting, and noise-induced phenom-
ena �12,13�. Thousands of electrosensitive organs are located
on an elongated appendage called the rostrum, located in
front of the head. The rostrum acts as an antenna for detect-
ing weak electrical signals emitted by planktonic prey
�12,14�. A single ER is a system consisting of a cluster of
3–35 skin pores �Fig. 1�, each leading into a short canal �15�,
which ends in a sensory epithelium containing �400 hair
cells. The hair cells of a cluster synaptically excite the ter-
minals of a few �2–4� primary afferent sensory neurons,
whose axons project to the brain. The population of epithelial
cells generates stochastic oscillations at approximately
26 Hz, expressed as a noisy oscillatory field voltage that can
be recorded from ER canals. Collectively we term this the
“epithelial oscillator” �EO�. The EO is coupled unidirection-
ally via synaptic excitation to another oscillator, residing in
each afferent’s terminal, and driving spikes. The latter “af-
ferent oscillator” �AO� has a natural frequency in the
30–70 Hz band, depending on the particular ER, and is ex-
pressed as a dominant peak in power spectra of spontaneous
afferent firing. Afferent spectra also show a noisy peak at the
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EO frequency �9,10�, due to the hair-cell–to–afferent synap-
tic input �15�. Both types of oscillators influence the pattern
of afferent firing, which, as a result, is stochastically biperi-
odic or quasiperiodic.

A detailed study of cellular mechanisms of paddlefish ERs
is not available yet, and thus a detailed ionic model of an ER
system cannot be constructed at this time. Nevertheless, to
investigate the functions of biperiodic organization, we pro-
pose minimal formal models for the spontaneous stochastic
oscillations and biperiodicity observed in paddlefish ERs.
The first and most general model is a circle map. This model
has been widely studied in the mathematical literature, and is
a generic model for a periodically driven self-sustained os-
cillator. The second model is based on the Ermentrout-
Koppell canonical phase model, or so-called theta neuron
model, which describes type-I spiking or excitability �16�.
We include an additional noisy periodic modulation of a con-
trol parameter, to incorporate the EO.

Using these models, we studied the impact of epithelial
oscillators on the statistical properties of afferent firing, seek-
ing to delineate possible advantages of internal oscillators
and biperiodic organization for the operation of hair cell–
primary afferent sensory receptors in general, as well as
paddlefish ERs. In particular, we explored possible origins of
the extended negative correlations of afferent interspike in-
tervals �ISIs� that have been observed in experimental data.
Recently, in another type of ER found in weakly electric fish
�17–19�, it was shown that anticorrelations of ISIs, lasting
for only a few ISIs, lead to regularity of P afferents on inter-
mediate time scales ��200 msec� and give rise to increased
ER sensitivity �17�. In general, ISI correlations have been
attributed either to internal dynamics of a neuron, such as
slow adaptation currents, or to external correlated input

�20,21�. We observe ISI anticorrelations in the afferent firing
of paddlefish ERs, but the anticorrelations are more ex-
tended, continuing for up to 50 ISIs �9,10�. We show here
that the extended duration of ISI anticorrelations in a paddle-
fish ER is due to its biperiodic structure, based on our ex-
perimental evidence for the existence of epithelial and affer-
ent oscillators �9,10�, and the known hair-cell–to–afferent
coupling �15�. Furthermore, we present experimental and
modeling results showing that the structure of the ISI serial
correlations is determined by the ratio of the frequencies of
the EO and the AO.

The paper is organized as follows. In Sec. II we review
experimental results on spontaneous activity of electrorecep-
tors. Sections III and IV are devoted to the circle map and to
the phase models, respectively.

II. STATISTICAL PROPERTIES OF OSCILLATIONS
IN PADDLEFISH ELECTRORECEPTORS

Epithelial oscillations result from the collective activity of
hundreds of cells in the epithelial layer at the bottom of a
canal. Their summed voltage activity, as recorded using a
single pipet electrode inserted into a canal’s skin pore, we
refer to as the EO. Remarkably, the fundamental frequency
of the EO in different canals and in different fish is very
similar �26±1.6 Hz�, at the regulated temperature of 22 °C
�10�. We will employ this fact further on, using the period of
the EO, Te=1/ fe=1/26 sec, as a reference time scale for
modeling of ERs. The EO processes in different canals of the
same ER are uncorrelated �10�. The epithelial oscillations are
closely akin to Gaussian narrowband or “harmonic” noise
�22�. Since 3–35 epithelia converge synaptically onto a given
afferent, then the EO input to an afferent is a sum of 3–35
uncorrelated stochastic oscillatory processes of similar fre-
quency.

In contrast to the EO, the fundamental frequency of the
afferent oscillator, estimated as the mean spontaneous firing
rate or from the fundamental peak in power spectra of spon-
taneous firing, was distributed over a wide range of
30–70 Hz for different afferents in different fish �10�, at
22 °C. For a given afferent, the smoothed firing rate was
relatively fixed, and the probability density of interspike in-
tervals had a �-like shape with a well-expressed single peak.
The coefficient of variation �CV�, defined as the ratio of the
standard deviation of the ISI to the mean ISI, cv
=���2�− ���2 / ���, was in the range of 0.1 to 0.38 �10�. How-
ever, since CVs and probability density distributions of ISIs
are invariant for simple shuffling of interspike intervals,
these commonly used neuroscience metrics do not provide
information about the correlation structure of afferent spik-
ing.

Stimulation with external electric fields revealed another
striking feature of ERs. Only the AO frequency was affected
by weak external electric stimuli, while the frequency of epi-
thelial oscillations was almost invariant �10�. Inhibitory step
stimuli of large enough amplitude can stop the afferent firing,
which then returns �adapts� back to normal with a gradually
increasing firing rate. During slow inhibitory linear ramp
stimuli, the firing rate can be gradually decreased down to

FIG. 1. Organization of electroreceptors �ERs� on the rostrum of
paddlefish. They are of the ampullary cathodally excited type, like
ERs in sharks and rays. Each short �0.2 mm� canal leads from a
0.1 mm diameter pore on the skin to a sensory epithelium, contain-
ing voltage-sensitive hair cells. The canals in a single receptive field
form a cluster, approx. 2 mm in diameter. All of the epithelia in the
cluster are innervated by 2–4 afferent sensory neurons, whose ax-
ons conduct action potentials to the brain.
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zero. These experimental observations suggest that the affer-
ents conform to the so-called type-I neuronal spiking
�16,23�.

Power spectra of spontaneous afferent firing showed a
specific structure expected for a periodically driven nonlinear
oscillator �see Fig. 2�. The main peak at fa corresponded to
the mean firing rate of the afferent. An independent peak at
fe corresponded to the frequency of epithelial oscillations,
since it matched the fundamental peak in the power spectrum
of a canal signal from the afferent’s receptive field. Side-
bands at fa± fe and higher harmonics of these peaks were
always present. The mean EO:AO ratio of their fundamental
frequencies during spontaneous activity, w= fe / fa, was
0.49±0.08, estimated from power spectrum peaks of 67 af-
ferents �10�. This ratio was relatively fixed in a given affer-
ent. That is, the EO and the AO were often close to being in
a 1:2 rational frequency ratio.

In the absence of epithelial oscillations, e.g., in aged
preparations in which the EO amplitude had run down, af-
ferent firing became nearly periodic �9�: its power spectrum
showed only a narrow sharp peak at the mean firing rate �and
its higher harmonics�. Thus, epithelial oscillations can be
considered as internal noise for the ER system. This noise,
however, is narrowband, and leads to the existence of corre-
lations between interspike intervals, as seen in the fe peak
and sideband peaks in afferent power spectra.

An effective metric of correlations between sequential
ISIs, �n= tn− tn−1, is the autocorrelation function of interspike
intervals, also known as the serial correlation coefficient
�SCC�, defined as

C�j� =
��k�k+j� − ��k�2

��k
2� − ��k�2 , �1�

where j is the lag after a given ISI in terms of the number of
elapsed ISIs. The SCC �1� measures linear relations between
sequential interspike intervals, and ranges from −1 �anticor-
relation� to +1 �complete correlation�. In the case of a re-
newal point process, C�j�=� j,0, where � j,0 is the Kronecker
symbol. The SCC can be characterized by a single number,
the correlation time �or correlation length� tcor �24�, which in
our case can be calculated as

tcor = 	
j=1

�


C�j�
 . �2�

The SCCs in Fig. 2 �right column� clearly illustrate the non-
renewal character of the underlying stochastic point pro-
cesses. The SCCs showed oscillatory character, since there
was usually a negative correlation between the duration of
sequential ISIs. That is, a long ISI tended to be followed by
a short ISI, and vice versa �10,25,26�, such that the ISI vari-
ability was reduced when considering pairs of spikes
�17–19�.

A new result is illustrated in Fig. 2: the structure of the
SCC depends on the ratio w of the fundamental frequencies
of the two oscillators. The longest correlations observed in
Fig. 2�b� corresponded to the ratio w�0.5 between the fre-
quencies of the afferent and epithelial oscillators, that is, at
the rational mode locking ratio 1:2. In other examples, the
SCC showed beating as in Fig. 2�c� when the frequency ratio

FIG. 2. Experimental data
from paddlefish electroreceptor
afferents. Left column: Power
spectra calculated from spike
trains recorded from three differ-
ent primary afferents �a�,�b�,�c�.
Values of the epithelial-to-afferent
frequency ratio w are listed. Right
column: Serial correlation coeffi-
cients �SCCs� of the same spike
trains.
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was slightly farther away from 0.5. At larger departures from
w=0.5 �Fig. 2�a��, the anticorrelations were briefer and also
smaller in magnitude.

The anticorrelations of spontaneous afferent ISIs in
paddlefish ERs continue for an �10-fold larger number of
ISIs �significant up to 50, sometimes more �9,10�� than those
observed in P receptors of weakly electric fish �17,18�, in
which the anticorrelations propagate for only a few ISIs.
Thus, we refer to the normal ISI anticorrelations in paddle-
fish ERs as being “extended.” If the epithelial oscillations of
paddlefish ERs were absent, as in aged preparations, the SCC
of afferent ISIs still exhibited anticorrelations, but they van-
ished for lags greater than 2–3 interspike intervals �9�, which
we refer to as “short-term anticorrelations.” The latter are
probably an inherent property of the afferent terminal, and
appear due to slow ionic currents, as in a model for P recep-
tors of weakly electric fish �18�. In P receptors, these short-
term anticorrelations act to decrease the spectral power at
low frequencies in afferent power spectra �21,27�.

Our experimental data showing that the tenfold extension
of ISI anticorrelations is due to interactions of the EO and
AO include the following: �1� correlation between the pres-
ence or absence of the EO and the presence or absence �re-
spectively� of extended ISI anticorrelations; �2� dependence
of the structure and length of ISI anticorrelations on the
EO:AO frequency ratio in different receptors; and �3� ability
to evoke prompt increases in the ISI correlation length by
experimentally increasing the EO amplitude �9�, or vice
versa, in a given receptor. Based on results from P receptors,
we expect the extension of ISI anticorrelations to have sev-
eral functional effects: reduce higher-order variability, in-
crease sensitivity, decrease in spectral power at low frequen-
cies in afferent power spectra, and increase in effective
“memory” in the stochastic point processes of paddlefish ER
afferents.

III. PHASE RELATIONS BETWEEN THE TWO
OSCILLATORS: CIRCLE MAP MODEL

The circle map is the generic model to study quasiperiod-
icity and synchronization in periodically driven or coupled
self-sustained oscillators �28–30�. The circle map establishes
a correspondence between the phase of an oscillator at a
moment of time t= t0 and the phase at t= t0+T, where T is the
period of an external driving force �30�: �n+1=�n+2�f0T
+KF��n�, where f0 is the unperturbed frequency of the os-
cillator, F��� is a 2�-periodic function, and the parameter K
refers to the coupling �driving� strength. A generalization of
the circle map model leads to the concept of the annulus map
�30�, which was recently derived and studied in Ref. �31� for
a periodically driven leaky integrate-and-fire model with a
threshold fatigue.

Simultaneous recording from a paddlefish ER afferent and
a canal in the afferent’s corresponding receptive field al-
lowed the phase relations between them to be characterized
�10,32�. The phase ��t� of a canal signal s�t� was estimated
using the concept of an analytic signal �33�. The instanta-
neous phase of canal oscillations can then be calculated at
the spike times tn of the afferent, �n=��t= tn�. The next step

was to build a map �n+1=F��n� which served as an analog of
the circle map �28,29�. As further simplification, we can con-
sider the EO as a periodic signal driving the AO, such that �n
represents the phase of the EO at the moment of nth firing of
the afferent neuron: �n=2�fetn, where fe is the fundamental
frequency of the epithelial oscillator and tn is the firing time
of the nth afferent spike. The corresponding circle map reads

�n+1 = 2�� + �n + KF��n� . �3�

The parameter K corresponds to the amplitude of the epithe-
lial oscillations. The parameter � determines the ratio of fre-
quency of the unperturbed AO �e.g., when K=0� to the fre-
quency of the EO: �= fe / fa

0, where fa
0 is the frequency of AO

in the absence of driving from the EO. The resulting fre-
quency ratio fe / fa is given by the winding number �30�:

w =
fe

fa
= lim

n→�

�n − �0

2�n
. �4�

We can rewrite the circle map Eq. �3� explicitly for the af-
ferent spike times tn:

fetn+1 = � + fetn +
K

2�
F�2�fet� , �5�

where tn are spike times in seconds. In terms of the dimen-
sionless variable t̃n= fetn, we obtain

t̃n+1 = � + t̃n +
K

2�
F�2�t̃n� , �6�

where spike times are now measured in units of the period of
the EO, Te=1/ fe. With the first two harmonics taken into
account, F���=sin���+� sin�2��, the circle map has the
form

t̃n+1 = � + t̃n +
K

2�
�sin�2�t̃n� + � sin�4�t̃n�� + D	n. �7�

In Eq. �7�, we introduced Gaussian white noise 	n with in-
tensity D to account for stochastic variability in the AO �34�.
The second harmonic was introduced to avoid a degeneracy
of the period-2 cycle of the ISI �n= tn− tn−1 when �=0.5. In
the following we will use �=−0.15 for all calculations.

A continuous-time afferent spike train can be constructed
from a sequence tn generated by Eq. �7� as a�t�=	n��t− tn�,
where the spike times were renormalized back to dimension
units tn=Tet̃n with Te=1/26 sec for comparison with experi-
mental results. The power spectrum can be calculated in the
same way as for experimental data �10�: � functions were
approximated by a rectangular pulse centered at tn, and with
a width 
t=5�10−5 sec, corresponding to a sampling rate of
20 kHz. Power spectra were then estimated using the fast
Fourier transform, with averaging over overlapping windows
of length 
t�218=13.1 sec.

Figure 3 shows three examples of power spectra and the
SCCs calculated from the circle map �7�. The structure of the
model’s power spectrum closely resembles spectra from ex-
perimental spike trains �see Fig. 2�: there are two fundamen-
tal peaks at fe and fa, and sidebands. However, power spectra
from the circle map always display � peaks at the EO fun-
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damental frequency �fe� and its higher harmonics, instead of
finite-width peaks as in experimental power spectra. This is
because the circle map implies a pure periodic driving, and
thus does not take into account fluctuations in the EO. It is
important to note that the structure of the SCC is determined
by the frequency ratio w: the serial correlations are most
pronounced when w is equal to 0.5, the case of 1:2 phase
locking. For w close to 0.5, the SCC shows a beating struc-
ture, just as in experimental data �Fig. 2�c��.

As mentioned, a corresponding renewal process could be
constructed from an ER afferent spike train by shuffling the
sequence of ISIs, which destroys all correlations between
intervals, while preserving the ISI distribution. Thus, this
renewal process possesses the same mean ISI and CV as the
original process.

To characterize in the frequency domain the impact of ISI
correlations, we introduced the spectral ratio S�f�, calculated
by dividing the afferent power spectrum Gaa�f� by the power
spectrum of the corresponding renewal process Gaa

shuf�f�:

S�f� = Gaa�f�/Gaa
shuf�f� . �8�

The spectral ratio at any given frequency is equal to 1 for a
renewal process. The power spectrum at zero frequency can
be related to the long-term variability and the SCC as
�21,35,36�

Gaa�f = 0� =
cv

2

����1 + 2	
j=1

�

C�j�� . �9�

From the last formula, it is easy to see that the negative ISI
correlations �C�j��0� lead to a loss of power at low fre-

quencies, and to a decrease of long-term variability, and thus
improve the performance of a sensory neuron for low-
frequency �slow� stimuli �27�. The loss of power at low fre-
quencies, due to ISI correlations, can be quantified by the
value of the spectral ratio at zero frequency:

S0 = S�f = 0� = �1 + 2	
j=1

�

C�j�� . �10�

Thus, the spectral ratio characterizes the long-term variabil-
ity of afferent firing as compared to a renewal process having
the same mean firing rate and CV as the original spike train.

In the absence of periodic forcing �K=0�, the circle map
reduces to a linear discrete system, t̃n+1=�+ t̃n+D	n. In the
case of white noise, this model describes a renewal process
with cv=D /�. With K�0, the measures of variability be-
come functions of both K and �, as well as the noise intensity
D. In the absence of noise, D=0, the circle map possesses
various mode-locking or synchronization regions �Arnold
tongues� on the parameter plane �� ,K� where the mode-
locking m :n regimes are stable. The borders of the Arnold
tongues correspond to the saddle-node bifurcation transitions
from m :n periodic mode-locking cycles to a quasiperiodic
motion with irrational winding numbers �28,30�. The influ-
ence of noise results in a shrinking of Arnold tongues �34�.
However, the diffusion of an oscillator’s phase is minimized
inside the synchronization regions �30�, and thus should lead
to extended correlations.

We concentrate on the parameter region corresponding to
a frequency ratio w near 0.5, as observed for paddlefish ERs.
First, in Fig. 4, we show the dependence of the CV, the

FIG. 3. Power spectra �left
column� and corresponding SCCs
�right column� for spike trains
generated by the circle map model
�7� with parameters chosen to
mimic experimental results as in
Fig. 2. Values of the epithelial-to-
afferent frequency ratio w are
listed. The parameters were �a� �
=0.429, K=0.4, D=0.04; �b� �
=0.5, K=0.4, D=0.04; �c� �
=0.471, K=0.4, D=0.04. The
spike times were renormalized
back to the dimension units tn

=Tet̃n.
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correlation time, and the spectral ratio S0 on the amplitude of
the EO �parameter K� for various values of parameter �
=0.5, and with fixed noise intensity. As in experimental data
�9�, the EO enhances variability of ISIs, expressed in terms
of the CV: the CV increases with increasing K �Fig. 4�a��. On
the other hand, the EO reduces higher-order variability, since
the ISI correlation time increases monotonically with K, and
the spectral ratio S0 decreases as the EO amplitude grows:
both indicate that ISI correlations contribute to a loss of
power at low frequencies.

Next, we vary the parameter �, keeping constant the EO
and noise amplitudes. Both the correlation time �Fig. 4�e��
and the spectral ratio �Fig. 4�f�� undergo sharp extrema when
� and the frequency ratio w pass through 0.5, which corre-
sponds to the center of the 1:2 synchronization region �two
afferent spikes per one cycle of epithelial oscillations�.

These results from circle map models predict that corre-
lation measures of ER afferent spike trains may undergo
drastic changes when passing through synchronization re-
gions, with extreme ISI correlation corresponding to a maxi-
mal loss of low-frequency power, occurring at w=0.5. Varia-
tion in w could be evoked by slow �in comparison with the
periods of EO and AO� external stimuli, which could be
introduced in the circle map model as variation of the param-
eter �.

IV. PHASE MODEL

A minimal model describing so-called type-I spiking and
excitability is given by a canonical model �also known as the
theta neuron model� �16,37,38�, in which the neuron is de-
scribed by a single phase variable :

̇ = �1 − cos � + �1 + cos �r , �11�

where r is the bifurcation parameter. For negative values of
r, the model is excitable: it possesses two equilibria, ±

= ±cos−1��1+r� / �1−r��, which are unstable and stable, re-
spectively �see �39� for complete mathematical study�. The
equilibria ± merge at r=0, and for r�0 the model repre-
sents periodic spiking with the frequency f0=�r /�. A spike
is generated every time �t� crosses the value of �. The
influence of white noise on the model was studied numeri-
cally in �40�, and analytically in �41�.

In our case of epithelia-afferent electroreceptors, the ca-
nonical model is used to mimic spontaneous firing of an
afferent neuron, modulated by epithelial oscillations. To sim-
plify consideration, we model the EO by a single stochastic
self-sustained oscillator, and assume that it is described by
only its phase ��t�:

�̇ = 2� f̃ e + �2Q	�t� , �12�

where f̃ e is the �dimensionless� frequency of the EO, and 	�t�
is zero-mean white Gaussian noise, with intensity Q, intro-
duced to account for phase fluctuations. The EO signal is
then described as e�t�=cos���t��, with the autocorrelation

function �e�t�e�t���=exp�−
t− t�
Q�cos�2� f̃ e�t− t���, and with
a Lorentzian peak in its power spectrum, of width Q. Further

on, we assume f̃ e=1/2�. Indeed, alternate models for the EO
are possible. For instance, a Gaussian narrowband noise �har-
monic noise� �22� produces similar results. We introduce an-
other Gaussian colored noise term ��t� into Eq. �11� to ac-
count for the variability of the afferent firing in the absence
of epithelial oscillations. Thus, our phase model is described
by the following dimensionless equations:

̇ = �1 − cos � + �1 + cos ��r + A cos � + �D��t�� ,

FIG. 4. Numerical simulations
of the circle map �7�. The depen-
dence of CV �a�, ISI correlation
time �b�, and the spectral ratio at
zero frequency �c�, versus the am-
plitude of the EO, K, at fixed �
=0.5. �d�–�f� Dependence on the
parameter � for the fixed values of
K=0.3. �d� The frequency ratio w
versus �. The solid line shows the
deterministic case. Arrows point
to the synchronization region,
which is a flat segment when the
frequency ratio equals 0.5. Dashed
line corresponds to D=0.04. �e�
ISI correlation time versus �. �f�
Spectral ratio at zero frequency
versus �. Noise intensity D=0.04.
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�̇ = 1 + �2Q	�t� . �13�

In the model Eq. �13�, the parameter A is the amplitude of
the EO, and D is the intensity of Ornstein-Uhlenbeck Gauss-
ian noise ��t� with autocorrelation function ���t���t+ t���
=� exp�−�
t− t�
� where 1/��1 is the noise correlation
time. The noise sources ��t� and 	�t� are statistically inde-
pendent: �	�t���t���=0. We set �=100 for all further numeri-
cal simulations. Since Eqs. �13� are dimensionless, in order
to compare simulations with experimental results we renor-
malized the numerically obtained dimensionless spike time
sequences t̃k ,k=1, . . . ,N, to spike times in seconds as
t̃k /2�fe, with fe=26 Hz. Numerical simulations of Eqs. �13�
were conducted using the Euler scheme with the time step

t=10−3, and the duration of simulation for each parameter
value was equivalent to 10 min of experimental recording.

Numerical calculations of the power spectra, the SCCs,
and the spectral ratios are shown in Fig. 5. In contrast to the
circle map, the phase model Eqs. �13� takes into account
fluctuations in the EO, which are reflected in a finite width of
the EO power spectral line. The power spectrum had the
same characteristic peaks as observed in experiments, and
the SCCs showed experimentlike extended correlations.

The impact of serial correlations can be seen in Figs.
6�a�–6�c�, where the spectral ratio was always less than 1 in
the low-frequency domain. The SCC correlation time and the
spectral ratio showed qualitatively the same behavior as for
the circle map: at 1:2 mode locking, serial correlations
showed maximal correlation time, while the spectral ratio

attained its minimal value, indicating subtraction of power at
low frequencies.

A closer look at the experimental power spectra �Fig. 2�
and the spectral ratio �Fig. 6�d�� revealed differences from
numerical simulations in the low-frequency domain: the ex-
perimental power decreased toward zero frequency, whereas
in numerical simulation �Fig. 5� the power spectrum satu-
rated in the low-frequency domain.

As discussed above, the experimental data still showed
short-term negative serial correlations and corresponding
low-frequency shaping of the power spectra �21� when the
EO was absent �or of low amplitude�. Such short-term nega-
tive correlations can be introduced into the canonical model
by the addition of a slow adaptation variable u�t�:

̇ = �1 − cos � + �1 + cos ��r + A cos � + �D��t� − u� ,

�̇ = 1 + �2Q	�t� ,

u̇ = − �u + s�� − �� , �14�

where ��1 and s�0. Whenever a spike occurs, i.e., 
crosses �, the slow variable u undergoes a steplike increase,
and then relaxes back to u=0. The negative character of the
feedback delays the next firing, and thus results in adaptation
to external stimuli �16,42�. For the leaky integrate-and-fire
model, it was shown recently that such adaptation results in
anticorrelations of ISIs �21�. The influence of short-term ISI
anticorrelations on the power spectrum of a spike train is
twofold �27�. First, anticorrelations lead to loss of low-
frequency power, as was mentioned before. Second, anticor-

FIG. 5. Power spectra �left
column� and corresponding SCCs
�right column� for the numerically
simulated phase model �13� with
parameters chosen to produce the
same frequency ratios w and the
SCCs as in Figs. 2 and 3. Values
of the epithelial-to-afferent fre-
quency ratio w are listed. The pa-
rameters were �a� r=1.365, A
=0.35, D=0.05, Q=0.015; �b� r
=1.015, A=0.3, D=0.02, Q
=0.015; �c� r=1.155, A=0.4, D
=0.04, Q=0.015. The interspike
intervals were renormalized to the
period of the epithelial oscillator
�see text� to obtain similar time
scales as in experimental
recordings.
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relations result in more coherent oscillations, expressed as a
narrower spectral line at the fundamental frequency of the
neuron �21�. Figures 6�e� and 6�f� illustrates this for numeri-
cal simulations of Eqs. �14�. The power spectrum �Fig. 6�e��
possesses a narrower peak at the fundamental frequency of
the AO, and there is less power at low frequencies, as com-
pared to a renewal spike train. This shaping of the power
spectrum is more apparent for the spectral ratio S�f�, plotted
on a double logarithmic scale �Fig. 6�f��: the spectral ratio is
significantly less than 1 and declines toward 0 �note a very
good agreement with experimental result for the spectral ra-
tio shown in Fig. 6�d��.

V. CONCLUSION

We have used two generic models, the circle map and the
phase canonical model, to study stochastic biperiodic oscil-
lations in a sensory receptor system, paddlefish ERs, com-
posed of two unidirectionally coupled oscillators. An oscil-
lator residing in the primary afferent terminals �afferent
oscillator� is influenced �synaptically excited� by another os-
cillator residing in the population of epithelial cells �epithe-
lial oscillator�. Experimental data from paddlefish electrore-
ceptors were used to choose particular regimes and
parameter values of the models.

The models used in this study generate nonrenewal spike
trains with statistical properties, such as the power spectrum,
and negative serial correlations, that reproduce well the ex-
perimental data from paddlefish ERs. The models show that
the epithelial oscillator is responsible for the extended nega-

tive correlations of interspike intervals, as we also demon-
strated experimentally �9,10�. Thus the mechanism of ex-
tended negative correlations is different from the mechanism
of short-term negative correlations, like those observed in
other sensory receptors �17–19,26�, which can be introduced
in the phase model via slow adaptation currents �20�, acting
like negative feedback �43�. Thus one prominent conse-
quence of the biperiodic organization of paddlefish ERs is
the generation of very long-lasting oscillatorylike ISI corre-
lations.

In P receptors of weakly electric fish, short negative cor-
relations arise in part due to phase locking of afferent spikes
with the electric organ discharge. This is reflected in the
negative slopes of clusters in ISI return maps �44�. Even so,
the dominant effect of negative correlations was attributed to
slow adaptation currents. Three different scales of correla-
tions between interspike intervals of paddlefish ER afferents
have been reported. First, the short-term anticorrelations ob-
served even in the absence of epithelial oscillations �9�
propagate for only a few spikes, lasting 50–100 msec, de-
pending on the firing rate. They may be due to adaptation
currents in afferent terminals, and resemble the anticorrela-
tions in P receptors of weakly electric fish. Second, the ex-
tended anticorrelations studied here continue for 10–50 ISIs,
lasting 200–1000 msec �9,10�. Third, long-range anticorre-
lations lasting 10–200 sec have been reported �45�. Our fo-
cus is the second of these, the extended anticorrelations,
which we think are the most likely to be functionally signifi-
cant.

The experimentally measured ratio of the fundamental
frequencies of the epithelial and afferent oscillators was

FIG. 6. �a�–�c� Spectral ratios
S�f� for the numerically simulated
phase model �13� using the same
parameters values as in panels
�a�–�c� of Fig. 5. �d� Spectral ratio
calculated from experimentally re-
corded spike train of the same ER
afferent as in Fig. 2�a�. �e�,�f�
Power spectrum and spectral ratio
from numerical simulation of the
phase model, with additional slow
adaptation Eqs. �14�. The param-
eters were r=6.95, A=0.7, �
=0.02, s=0.3, D=0.06, Q=0.015.
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0.49±0.08 for 67 different paddlefish ERs �10�. Therefore
the two oscillators embedded into an ER system operate near
the strong 1:2 mode-locking regime. Our models predict that
the statistical properties of the spike trains depend crucially
on the frequency ratio of the two oscillators: the correlation
time of the SCC is maximal when the ratio of the fundamen-
tal frequencies of two oscillators attains the rational number
of 0.5. The increase of the correlation time corresponds to a
decrease of ISI variability at low frequencies, seen as re-
duced spectral power in the low-frequency domain. We note
that the frequency response of paddlefish ERs is maximal in
the low-frequency range of 1 to 10 Hz �10�, and thus a sup-
pression of variability at low frequencies may enhance sen-
sitivity of these ERs in an appropriate frequency range.

We can assume that spontaneous background activity of
electroreceptors is used by the animal, in some unknown
manner, as a reference to compare with a stimulus-altered
spike train. While the frequency of the epithelial oscillator is
invariant to weak external stimulation, the frequency of the
afferent oscillator is easily changed by weak stimuli. For
example, recalling that paddlefish use electrosense to locate
zooplankton prey such as Daphnia, an approaching Daphnia

passing along the rostrum with a constant speed generates a
time-varying voltage gradient near an individual ER that
generally has a bipolar wave form �46� and thus results in
slow biphasic changes of firing rate of the ER afferent. This
slow variation of afferent firing rate can be expected to lead
to time-varying changes in the frequency ratio w, resulting in
significant time-varying changes in the correlation statistics
of the afferent spike train during the stimulus. After the
stimulus has ceased �e.g., the Daphnia has passed out of
range�, the frequency ratio and ISI statistics return to the
prestimulus state. We hypothesize that such prominent
stimulus-induced changes in ISI statistics, resulting from the
biperiodic organization of paddlefish ERs, convey informa-
tion about a stimulus to the animal’s brain for further pro-
cessing.
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